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Abstract--The velocity distribution function of a dilute bidisperse particle-gas suspension depends on the 
relative magnitudes of the viscous relaxation time, T,, and the time between successive collisions, %. The 
distribution functions in the two asymptotic limits, zc '~ ~, and zv '~ ~,, which were analysed previously are 
qualitatively very different. In the former limit, the leading-order distributions are Gaussian distributions 
about the mean velocity of the suspension, whereas in the latter case the distributions for the two species 
are singular at their respective terminal velocities. Here, we calculate the properties of the suspension for 
intermediate values of %/% by approximating the distribution function as a composite Gaussian 
distribution. This distribution reduces to a Gaussian distribution in the limit % ,~ ¢~, in agreement with 
previous asymptotic analysis. In the intermediate regime, however, the composite Gaussian has a non-zero 
skewness, which is a salient feature of the distribution in the limit ~, .~ %. We have also performed 
numerical calculations using the direct-simulation Monte Carlo method. The approximate values for the 
moments of the velocity distribution obtained using the composite Gaussian compare well with the full 
numerical solutions for all values of rv/zc- 
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1. I N T R O D U C T I O N  

Particle--gas suspensions are encountered in many industrial processes, such as fluidized beds and 
pneumatic transport processes. The interaction between the particle and gas phases in the 
suspension is rather complex, and is influenced by the particle and gas inertia and gas viscosity, 
and the collisional and hydrodynamic interaction between the particles. Due to the complex nature 
of the interactions, it is difficult to calculate the macroscopic properties of the suspension from 
detailed microscopic models. Previous studies have used continuum models which treat the particle 
and gas as two continuous phases capable of exchanging momentum and energy. 

The model that was used by Jackson (1963) to analyse the stability of a fluidized bed included 
particle inertia, and approximated the interaction between the fluid and particles by a drag force, 
D =//(n)(u - v), where/~(n) is a function of the number density of the particles and u and v are 
the mean fluid and particle velocities, respectively. This analysis led to the conclusion that the 
uniform state of the fluidized bed is always unstable. More recent continuum theories (Didwania 
& Homsy 1982; Batchelor 1988) have attempted to improve on this model by incorporating the 
particle interactions in the form of a particle "pressure" and particle diffusivity, which are 
analogous to the pressure and diffusivity of the molecules in a gas. It has been speculated that the 
particle pressure could stabilize the uniform state of the fluidized bed. In the kinetic theory of gases, 
the pressure is proportional to the mean-square of the fluctuating velocity of the gas molecules, 
and it has been shown that the particle pressure can be related to the mean-square of the fluctuating 
velocities of the particles in rapid granular flows (Koch 1990; Jenkins & Richman 1985). However, 
the mean-square velocity is difficult to calculate in general because the distribution function of the 
particle velocities can be very different from the Maxwell-Boltzmann distribution for the molecules 
in an ideal gas. 

The velocity distribution function for a dilute bidisperse particle-gas suspension settling in a 
quiescent gas in the limit Re ,~ 1 and St >> 1 was calculated in Kumaran & Koch (1993a, b), which 
hereafter will be referred to as parts 1 and 2, respectively. Here, the Reynolds number is given by 
Re = (poUa/~), and the Stokes number is given by St = [mU/(6mla2)], where Po and r/ are the 
density and viscosity of the gas, m and a are the mass and radius of a particle and U is a 
characteristic velocity. The analysis is greatly simplified in this limit because for Re <~ 1 the inertia 
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of the gas can be neglected, and the dominant effects in the suspension are the particle inertia and 
gas viscosity. The authors simplified the analysis further by neglecting the effect of hydrodynamic 
interactions and retaining only the collisional interactions between the particles; this approximation 
was shown to be valid for St ~> V-J,'2 in the appendix to part 2, where V is the volume fraction 
of the particles. Hydrodynamic interactions play a significant role in the dynamics of monodisperse 
suspensions, which were analysed by Koch (1990). 

The velocity fluctuations in a bidisperse suspension are controlled by a balance between the 
creation of fluctuating motion, due to solid-body interparticle collisions driven by the difference 
in the particles' terminal velocities, and the dissipation of this motion due to viscous drag. 
Therefore, there are two time scales that determine the dynamics of the bidisperse suspensions. The 
viscous relaxation time of species i, rvi = [mi/(6nqai)] is the time it takes a particle to relax to its 
terminal velocity after a collision (see [3]). Here, mi and a~ are the mass and radius of a particle 
of species i and q is the viscosity of the gas. The index i is used to denote the type of particle and 
in our convention, the index 1 is used for the heavier particle and 2 for the lighter particle. The 
collisional time, zc~, which is given by [l/(njnd~vO], is the time between successive collisions of a 
particle of species i with particles of species j (see [6]). Here, nj is the number density of species 
j and vr is the order of magnitude of the fluctuating velocity of the particles. 

In parts 1 and 2, we analysed asymptotic limits in which one of the time scales is large compared 
to the other. In this paper, we calculate the moments of the velocity distribution in the intermediate 
region between the two limits using an approximate distribution function. In addition to this 
approximate calculation, we present values of the velocity moments derived from direct numerical 
simulations. For convenience, we define the parameter et = [n~(4na~)v,m~/(6nqa~)], which is 
proportional to the ratio of the collisional and viscous relaxation time for particles of species 1. 
Here, v, is the terminal velocity of particles of species 1, and we note that e~ is proportional to 
St V, where V is the volume fraction of the particles and St, the Stokes number of particles of 
species 1, is given by [mlv,/(6rula~)]. 

In the limit e~ ~ l, which was analysed in part l, the leading-order distribution functions of the 
two species are Gaussian distributions. The fluctuating velocities of the particles are O(et  ~/3) 
smaller than the mean velocity. The velocity variances were calculated correct to O(~i 2..3) from the 
balance equations for the velocity moments. The O(~ t 2/3) corrections to the velocity variances are 
small for ~ of O(103), but they are of the same order of magnitude as the leading-order terms for 
e~ of O(102), indicating that the asymptotic analysis is only accurate for very large values of ~.  
The mean-square velocity in the vertical direction in this limit, which is plotted on the right side 
of figure 1, shows a very sharp increase for e~ of O(100). 

In the limit e~ ,~ 1, analysed in part 2, the particles relax to their terminal velocity between 
successive collisions, and the distribution function was calculated using a perturbation analysis 
about a base state in which all the particles are settling at their terminal velocities. The corrections 
to the mean and mean-square velocities of the particles are O(~) when scaled by the difference 
in terminal velocities. The O(~ 2) corrections to the velocity moments are small for ~ of O(0.1), 
indicating that the asymptotic analysis is quite robust in this limit and can be extended to higher 
values of e~. 

It is useful to compare the mean velocity, velocity variance and skewness of the velocity 
distribution functions in the two limits. The skewness in the vertical direction is defined as 
[ ( ( U i z  - -  U i m ) 3 ) / ( ( V i z  - -  Ulm)2)3/2], where vi: and Uim are the particle velocity and the mean velocity of 
species i, and due to the symmetry of the system the skewness is zero in the horizontal plane. In 
the limit et ~> 1, the distribution function is an isotropic Gaussian and the skewness is zero to 
leading order. In the limit e~ ,~ 1, the distribution is highly anisotropic and the mean-square velocity 
in the vertical direction is twice that in the horizontal plane. The skewness in the vertical direction 
increases as e i -~/2 in this limit. 

From figure 1, it can be seen that we do not have estimates for the mean-square fluctuating 
velocities in the intermediate region, which may be important in practical applications. For 
example, e~ is about 350 V for particles of 100pm dia settling in air. Since exact solutions to the 
Boltzmann equation cannot be obtained except in the asymptotic limits, we must resort to either 
numerical simulations or an approximate analysis based on an assumed form of the distribution 
function. We shall pursue both of these approaches in the present paper. The numerical simulation 
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Figure I. Mean-square of the fluctuating velocity in the vertical direction of the particles of species I, as 
a function ofe~. The curves on the left are the e.~ 4 1 asymptotic solutions calculated in part 2, and those 
on the right are the e~ ~> I asymptotic solutions calculated in part 1. The ratio of number densities, n 2 / n  ~ , 

is I and the ratio of particle sizes, a~ = a 2 / a  I , is: - ---- ,  a c = 0.5; - - - ,  a~=0.7; . . . .  , a~ = 0.9. 

is based on the direct-simulation Monte Carlo (DSMC) method, which has been shown to be 
equivalent to a numerical solution of  the non-linear Boltzmann equation (Bird 1970). 

To obtain a theoretical model of  the suspension dynamics in the intermediate region, we need 
an approximate distribution function that incorporates the characteristics of  the distributions in 
the two limits. Since the analysis is less robust in the limit el ~> l, we use a distribution function 
that is similar to a Gaussian in this limit, but has a non-zero skewness. 

Distribution functions that are small perturbations about a Gaussian distribution have been used 
in the kinetic theory of  dense gases, and in theories for granular flows. In the Chapman-Enskog 
theory for gas mixtures, the first perturbation to the distribution function is proportional to the 
gradients in the temperature and the mean velocities of  the components (Chapman & Cowling 1970, 
Chap. 7). The coefficients of  the gradient terms are expanded in a Sonine polynomial series, since 
the orthogonality of these polynomials simplifies the evaluation of  the collision integral. The 
thermal conductivity and viscosity of  the gas are determined from the first correction to the 
distribution function. However, this procedure is not appropriate for the present case for the 
following reasons. The analysis in kinetic theory uses a perturbation about the isotropic 
Maxwell-Boltzmann distribution, whereas in a bidisperse suspension we would expect the 
leading-order distribution function to be anisotropic and skewed in the intermediate regime. The 
forces on the particles are dependent on velocity, therefore the kinetic theory analysis gives an 
erroneous expression for the work done due to gravitational and viscous forces (see the end of the 
section 2.3 in part l). Also, since the force is not divergence free in velocity space, the principle 
of detailed balancing is not applicable for these suspensions, as discussed in the appendix to part I. 

In granular flows there is a source of  energy due to the shearing motion of  the suspension, and 
the dissipation of  energy due to viscous drag is assumed to be small compared to that due to 
inelastic collisions between particles (see Jenkins 1987). If the coefficient of  restitution is close to 
1, this system is similar to a dense gas of  hard spheres in equilibrium, which has a Maxwell- 
Boltzmann distribution of  velocities. The shearing of  the suspension causes a perturbation to the 
leading-order distribution, and this is usually assumed to be an expansion in Hermite polynomials. 
Since the Hermite polynomials constitute an orthogonal function space, in which the inner product 
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is defined with a Gaussian weighting function, the moments of the distribution are relatively easy 
to calculate. However, this distribution function has the following disadvantage. If the highest 
power of the polynomial in the expansion is odd, the distribution function becomes negative at 
large velocities. For small perturbations, the fraction of particles having a negative distribution 
function is small, but for larger deviations from the Maxwell distribution this expansion assigns 
a negative distribution function to a significant fraction of the particles. 

In section 2, we propose a composite Gaussian distribution that takes into account the skewness 
in the vertical velocity distribution, and is positive at al! points in velocity space. The average 
properties calculated using this distribution function are compared to those obtained using 
asymptotic analysis in parts 1 and 2. 

In section 3, we perform a numerical calculation of the error incurred in the equation for the 
velocity distribution function through the use of the approximate distribution function. This 
analysis provides a self-contained check on the validity of the approximation. In addition, we have 
verified the accuracy of the approximate calculation through a comparison with the results of 
numerical simulations, which are discussed in section 4. 

2. APPROXIMATE DISTRIBUTION FUNCTION 

We consider a uniform bidisperse suspension of particles of species 1 and 2, having masses ml 
and m2, and radii al and a2, respectively, settling in a gas. The conservation equation for f ,  the 
distribution function of species i, is 

Ot = ~- f (v i )  -I. Ot"  [] l  

Here, V,, is the divergence operator in velocity space, and the first term on the right-hand side 
(RHS) is the accumulation of particles due to gravitational and drag forces. The acceleration of 
the particle due to these forces is given by 

d v i  vit e z  - -  ¥i  
- -  = ~ [ 2 ]  
dt ~vi 

Here v~ is the terminal velocity of particles of species i and e. is the unit vector in the vertical 
direction; % is the viscous relaxation time, given by 

m i  

% = 6nrlai' [3] 

where r/is the viscosity of the gas. 
The second term on the RHS of [1] is the collision integral or the rate of change of the distribution 

function due to collisions. For convenience, the collision integral is divided into two components: 

~¢f = N'i" (v,) - N°=(v,). [4] 
~t 

The collisional depletion of particles in the volume dye, due to collisions involving a particle in 
this volume, is calculated by carrying out an ensemble average over the velocities of the second 
particle in the collision and the orientations of the impact vector. Here, the impact vector is a vector 
joining the centers of the particles at the point of collision. The procedure for calculating the 
collisional depletion was described in part 1, and the final expression for N~=(vi) is 

N°=(v~) = | o f ( v ~ ) f j ( v j ) w  cos ~, sin ¢, dO dq dvj, [5] 
j = l  ~cU Jr'/' , =0 

where w is [v~- vj[, the magnitude of the relative velocity between the particles before collision. The 
time between successive collisions of a particle of species i with particles of species j,  %0, is given 

by 1 

zeu = nj(nd~)vf" [6] 
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Figure 2. CoUisional configuration for calculating the collisional accumulation and depletion. 

Here or is the order of  magnitude of  the fluctuating velocity of  the particles, which is the difference 
in terminal velocities for zv ~ %. In [5], ~, and r/are the azimuthal and meridional angles of  the 
impact vector relative to the direction of  the relative velocity, as shown in figure 2. 

The collisional accumulation, NI" (vi), in the volume dv i is calculated by carrying out an ensemble 
average over all collisions that transport particles into this volume. The relations between the 
particle velocities before and after collision are given in section 2.4 in part 1, and the final expression 
for the collisionai accumulation is 

Nin(vi)  = ~ ~ -  f r 2~ r n/2 f / (v*  ffjj(v*)w COS l~ sin~b d$ de dr*. [7] 
/ = l  t'cijJvj* d ~ = 0 J O = 0  

Here, v* and v* are the velocities of  the particles of  species i and j before collision, w* is the 
magnitude of  the relative velocity between the particles before collision and the angles ~, and r/are 
as defined before. 

The approximate distribution function used in this paper is a composite Gaussian distribution 
of  the form: + [ (v2 ,v:vD] 

[81 fAvi) =n3,2~,,[ ~ . +  , ~ .  ]exp - ,r . 

where ~= - ~=+ for v~: > vi, and ~: = ~._ for v~: < v~s. This distribution function is shown in figure 
3 for v~, = 0, ¢~:+ = 1 and ~._ = 0.5. It consists of  two Gaussian distributions patched together at 

0 . 4  - -  
fl 

0 I I 
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Vl z 

Figure 3. Distribution of vertical velocities for the composite Gaussian distribution. Here v~--0. 
~..+ = 1.0 and ~_._ = 0.5. The dashed line represents the mean of the distribution. 
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their max imum and is cont inuous  and differentiable about  the plane v,: = vi~. The distribution has 
a non-zero skewness in the vertical direction, and is always positive. Its second derivative is not  
cont inuous  about  the v~. = vis plane, but this does not  cause problems in the analysis since there 
are no second- or higher-order derivatives in the conservat ion equation. The moments  o f  this 
distribution function, (fl~(v~)), are: 

<vi:> = vi. + ~ [ ~  + x/l,---] ' [9a] 

and 

1' 

3 v ~ , ( ~ , : + - ~ r _ )  3v~,[~,:+ + ~,=_ - ~ ]  ~ ~2+ _ ~ :  

[9b] 

[9c] 

[9d] 

The parameters  v,,, ~i,, ~,:+ and ~,:_ in a uni form suspension, at steady state, are calculated from 
the balance equat ions for the above moments :  

a<a,(,i,> /I-d,, ]) [ lO] 
- \L dt " V,, ( f l , (v,))  + at 

The collisional rate o f  change o f  the velocity moments  are calculated using the ensemble-averaging 
procedure  described in par t  1. The steady-state values o f  the parameters  v~,, ~,,, ~,:+ and ~.._ are 
calculated by starting with an initial guess and integrating the unsteady-state balance equations in 
time until they converge to their final steady-state value. 

The results that  follow are for species 1, which is the heavier species in the suspension. Species 
1 was chosen because it exhibits a larger deviation f rom the asymptot ic  solutions in the limit e~ >> 1. 
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Figure 4. Distribution of vertical velocities fL-(VL.) as a function of vertical velocity vt: for a particle size 
ratio az/a~ = 0.7, and ratio of number densities nz/n  I = 1. The distribution functions represented by dashed 
lines were obtained using asymptotic analysis in the two limits. (a) et = 104 (asymptotic solution in the 
limit ~ ~, 1); (b) ej = 103; (c) e~ = 10:; (d) et = 8.779; (e) ~1 = 2.601; (f) 8~ = 0.5 (asymptotic solution in the 

limit et ,~ 1). 
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F i g u r e  5. M e a n  ve loc i ty  o f  species 1, ( v l : ) ,  as  a f u n c t i o n  o f  e~. T h e  curves  o n  the  left a r e  the  e I ,~ 1 
a s y m p t o t i c  s o l u t i o n s  a n d  those  o n  the  f i g h t  were  o b t a i n e d  us ing  the  c o m p o s i t e  G a u s s i a n  d i s t r i bu t ion .  T h e  
r a t i o  o f  n u m b e r  densi t ies ,  n2/n, ,  is 1, a n d  the  r a t i o  o f  pa r t i c le  sizes, ac = a2/at,  is: . . . .  , ac = 0.5; - -  

a c = 0.7; . . . .  , a¢ = 0.9.  

All velocities are non-dimensionalized by the terminal velocity of species 1, and ac is the ratio of 
the radii of the two species, a2/al. We present results for the case where the densities of the solid 
in the particles of the two species are equal, and their number densities, nl and n2, are also equal. 

The distribution of velocities in the vertical direction, f~:(vi:), is plotted as a function of the 
vertical velocity, vi:, for various values of ~l in figure 4. Note that f,:(vi:) is the integral of the 
distribution function f~(v~) over the horizontal velocity coordinates. The distribution function for 
8l = 104 was calculated using the asymptotic solution in the limit el >> 1, and that for el = 0.5 was 
calculated using the asymptotic solution in the limit el "~ 1. The distribution of velocities for 
intermediate values of el were calculated using the composite Gaussian distribution. The results 
for this distribution could not be extended below el = 2.5, because the variance ~.+ decreases to 
zero at about this value. There is a smooth transition from the Gaussian to the composite Gaussian 
distribution as el is decreased from l&. But for small values of el, the composite Gaussian 
distribution function is significantly different in form from the exact distribution in the limit ~ ~ 1, 
and the composite Gaussian is not singular at the terminal velocity. 

The mean and mean-square velocities calculated using the composite Gaussian distribution are 
shown to the right of the dotted line in figures 5-7. The curves on the left of the dotted line were 
calculated using the analytical distribution function in the limit e~ ,~ 1, and their accuracy at 
moderate values of el was enhanced by the inclusion of the O(e 2) corrections (see part 2). A 
comparison of figures 1 and 6, shows that the properties calculated using the composite distribution 
[8] are significantly different from those calculated using the large el asymptotic analysis, except 
at very large values of el. (A comparison of figures 10-12 in part 2 with figures 5-7 in this paper 
also leads to the same conclusion.) The composite Gaussian distribution correctly captures the 
initial increase and subsequent decrease of the mean-square velocities as e~ is decreased, and its 
behaviour is similar to the ei ,~ 1 asymptotic solution at el of about 2.5. 

Figure 8 shows the ratio of  the mean-square velocities in the vertical and horizontal directions, 
2 2 ((c~z)/(c~r)), which is a measure of the anisotropy in the velocity distribution. This ratio is 0.5 in 

the limit el >> 1, since the leading-order distribution function is isotropic, and it is 2.0 in the other 
limit el '~ 1. The ratio calculated using the composite Gaussian distribution provides a smooth 
transition between the two limits. 
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Figure 6. Mean-square  o f  the vertical fluctuating velocity o f  species 1, ( c ~ ) ,  as a function of  el. The 
curves on  the left arc the e~ ~[ 1 asymptot ic  solutions,  and those on  the right were obtained using the 
composi te  Gauss ian  distribution. The ratio o f  n u mb er  densities, n2 / n~ ,  is I, and the ratio o f  particle sizes, 

a c = a 2 / a ~ ,  is: - - - - - ,  a¢ = 0.5; - - ,  a t=0 .7 ;  . . . .  , a ~ = 0 . 9 .  
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Figure 7. Mean-squarc o f  the hor izontal  f luctuating veloci ty o f  species 1, (,c~,), as a function o f  ~ .  The 
curves on the left arc the e~ ~ I asymptot ic solutions, and those on the r ight were obtained using the 
composite Gaussian distr ibut ion. The rat io o f  number densities, n2/n~, is 1, and the rat io o f  particle sizes, 

a¢ = a 2 / a  t , is: - - - - - ,  a¢ = 0.5; - - ,  ac=0.7;  . . . .  , a¢ = 0.9. 
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Figure 9. Skewness  in the distr ibut ion o f  vertical velocities,  ( (c~:) / (~z)3/2) ,  as a funct ion o f  a t . The  curves 
on  the left are the at ,~ 1 asymptot ic  so lut ions  and those  on the right were obtained us ing the compos i t e  
Gauss ian  distribution.  The ratio o f  number  densities, nz/n ~ , is 1 and the ratio o f  particle sizes, ac = a-,/at, 

is: - - - - - ,  ac = 0.5; - - ,  a t = 0 . 7 ;  . . . .  , a¢ = 0.9. 
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Figure 9 is a plot of the skewness in the distribution of  vertical velocities, which is defined as 
3 2 3/2 [(c,~ )/(c~: > ]. In the limit e~ >3, 1, the skewness is small since the leading-order distribution function 

is a Maxwellian. In the limit s t ,~ 1, the skewness increases as s i-~/2, since both the second moment 
and third moment of the distribution are O(st ). The skewness in the intermediate region, calculated 
using the composite Gaussian distribution, matches well with that calculated using asymptotic 
analysis in the limit s~ ,~ 1. The skewness is small for st greater than about 100 and increases sharply 
to a value close to 1 as ej is decreased to about 10. 

The preceding results show that the composite Gaussian distribution gives more reasonable 
estimates for the velocity moments of the suspension than the asymptotic analysis used in part 1. 
Whereas the mean-square velocities calculated using the latter diverge for values of s~ as large as 
about 100, those calculated using the former give realistic results for s~ as low as about 2.5, and 
the values agree quite well with those calculated using asymptotic analysis in the limit st ,~ !. The 
improvement in the calculated properties more than makes up for the added complexity of 
including one additional conservation equation. 

3. AC CURACY OF THE A P P R O X I M A T E  D I S T R I B U T I O N  F U N C T I O N  

In this section, we estimate the accuracy of  the composite Gaussian distribution. At steady state, 
the viscous and collisional accumulations, calculated using the exact solution to the conservation 
equation [1], sum to zero at every point in the velocity space: 

N',n(vi)-N°Ut'v~ V .( dr' ) , , , , -  ,, ~-~f,(v,) =0 .  [11] 

Here, N? is given by [7] and N, °"t is given by [5]. The parameters in the distribution function [8] 
were calculated by solving the four balance equations [10], and [8] is not the exact solution to the 
conservation equation. Therefore, it cannot be expected to give a zero net accumulation at every 
point in the velocity space. 

We define a dimensionless measure of  the accumulation error, E~(vJ, as 

N'," (v,) - N°U'(v,) - V,,. (v,.tf~(vi)) 
E,(vJ = N~,(v,) + NOUt (v,) +lVv,.," (v,.,f(v,))l ' [12] 

E~ is zero at every point for the exact distribution function, and has a finite value at those points 
where the assumed distribution is in error. The root-mean-square of  the accumulation error, 
averaged over velocity space, gives a measure of the closeness of the approximate distribution 
function to the exact distribution function. The mean-square of the error is 

(E~) = r (E'(v'))2f~(vJ dvi. [l 3] 
j ,  i 

Since the exact distribution function is not known at this point, we use the composite Gaussian 
distribution as the weighting function in [I 3]. 

Numerical methods have been developed to solve the nonlinear Boltzmann equation for gas flows 
that are far from equilibrium (see Yen 1984). The numerical schemes consist of  two steps: (i) a 
Monte Carlo method for calculating the collision integral; and (ii) a time integration scheme to 
calculate the final steady-state distribution. The equation is solved numerically over a finite volume 
in velocity space that is large enough to include most of the molecules. The value of  the collision 
integral in each control volume is approximated by the product of the average of a large and 
random sample of the particle velocities and orientations at collision. This estimate of the collision 
integral is substituted into the integration scheme to obtain the value of  the distribution function 
at the next time step. 

In the present analysis, the collisional and viscous accumulations are calculated over a finite 
region in velocity space that is divided into control volumes. However, the collision integral is 
evaluated by a deterministic integration over the orientations and velocities of the particles at the 
point of  collision. The viscous accumulation is calculated using a simple finite difference scheme. 
The mean-square of  the accumulation error, (E~) ,  is calculated by integrating the square of  the 
accumulation error numerically over the velocity domain of  species i. 
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Figure 10. Root-mean-square accumulation error ~/(E~) as a function of el. The ratio of number 
densities, n2/nt, is 1 and the ratio of particle sizes a c = a2/a~, is: 0,  ac = 0.5; O, ac = 0.7; A, a c = 0.9. 

A cylindrical coordinate system is employed over a finite domain in the velocity space of  species 
i, which extends from 0 to 3.6 ~/¢i, in the u,r direction, and - 3.6 ~/¢i: to 3.6 ~/¢,: in the ui: direction. 
Here, ~i: is the greater of  ~i:+ and ~ :_ .  The distribution function in this domain is specified at 325 
nodes (13 equidistant values of  u~, each separated by 0.3 ~/~,  and 25 equidistant values of  u~: each 
separated by 0.3 ~/~:).  Each of  these nodes is at the center of  a control volume. The viscous fluxes 
at each control surface are calculated using a 4-point interpolation scheme. The error due to the 
interpolation scheme is < 1% of  the flux through the surface. 

The collisional accumulation and depletion, which are given by [5] and [7], are five dimensional 
integrals over the coordinates vj,, vj:, ~b, ~, and r/. Here, ~b is the polar angle between the horizontal 
velocities of  parties i and j. These integrals are evaluated using a 12-point Gauss-Legendre 
quadrature for the 4, ~b and r/coordinates, and a 12-point Gauss-Hermite quadrature for the vj, 
and vjz coordinates. The accuracy of  the integration scheme was verified for a Gaussian velocity 
distribution, for which the collisional terms can be evaluated analytically. The results produced by 
the integration scheme had an error of  about 2% for this distribution. 

The root-mean-square of the accumulation error is plotted as a function of  Sl in figure 10. The 
error is low for st greater than about 10, and at el = 8 the error is about 6% for ac = 0.5 and 0.7, 
and close to 12% for ac = 0.9. However, at el = 2.5, the error increases to about 12% for a¢ = 0.5 
and 0.7 and about 25% for ac = 0.9. Thus, the assumed distribution function is accurate only for 
st greater than about 10. 

4. N U M E R I C A L  S I M U L A T I O N S  

In this section, we present results of  numerical simulations for the moments of  the velocity 
distribution in the bidisperse suspension. In a preliminary study, we used a dynamic simulation 
method, following changes in the position and velocity of N particles in a unit cell with periodic 
boundary conditions as they experienced solid-body collisions and a viscous drag force. This 
method gave accurate results for the collision dominated regime (large el). However, when the 
viscous deceleration of  the particles between each successive collision was large (small el ) and most 
of  the particles had velocities close to their terminal velocities, the spatial configuration of  the 
particles would arrange itself such that all the particles would miss one another and no further 
collisions would occur. 
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To avoid this situation, we decided to use the Direct-simulation Monte Carlo (DSMC) technique, 
which follows the evolution of the particles' velocity distribution functions in time without 
requiring the precise specification of  particle positions. Bird (1970) has shown that the DSMC 
method is equivalent to a solution of the Boltzmann equation for a dilute suspension. The 
application of  the technique to a bidisperse system is discussed in Bird (1968). 

The DSMC method follows the evolution of  the velocities of  N i particles of  each species, where 
Ni = 20,000 for i = 1, 2 in most of  our calculations. We choose a time step At ,~ min(zc, zv), so the 
change in the velocity distribution functions within one time step is small. For  small At, it is possible 
to decouple the effects of  solid-body collisions and viscous drag on particle velocities. Thus, one 
first decelerates all particles due to viscous drag using [2]. Second, one calculates the effect of 
solid-body collisions using the following algorithm. Two particles are chosen at random and are 
accepted or rejected for a collision according to a probability weighting (w l td  2) that is proportional 
to the collision rate calculated from their relative velocity and collision cross section, cf. [5]. If  the 
pair is accepted, an impact parameter (~, r/) is chosen with a probability weighting (cos ~b sin ~)  
and the particle velocities are changed according to the rules for perfectly elastic, frictionless 
collisions. A set of  time counters t o are kept for collisions between particles of species i and j and 
these are incremented by an amount  

A t  o = ~d2 w + [141 

following each successful/j-collision, where n~ and ny are the number densities of  species i and j. 
One continues to choose particles for collisions as described above until all of  the time counters 
reach the next time increment and then the procedure of  viscous relaxation and collision is repeated 
for the next time step. To obtain accurate results, it is required that the number of  collisions 
occuring within the total set of  particles in each time step is large and this can be achieved using 
large values of  N~. 

Our simulation is simpler than the typical application of  DSMC in rarefied gas dynamics in that 
we have a spatially homogeneous system. Thus, whereas one must typically discretize space and 
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Figure 11. Mean velocity of species I, <v~: ), as a function of ~ : m, DSMC numerical simulations; . . . .  , 
approximations described in section 2; - - - ,  approximation of Goldman & Sirovich (1967). The ratio 

of particle number densities n,/n I = 1 and the particle size ratio a2/a~ = 0.7. 
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Figure 12. Mean-square of  the vertical fluctuating velocity of  species 1, (c2._ >, as a function of  et: I ,  
DSMC numerical simulations; . . . .  , approximations described in section 2; , approximation of  
Goldman & Sirovich (1967). The ratio of  particle number densities n2/n t = 1 and the particle size ratio 

a2/a, = 0.7. 

follow the velocity distribution function within a set of  spatial cells by following the collisions 
between Ni particles within each cell, we need consider only one set of  particles. This enables us 
to obtain accurate results for situations where the velocity distribution is far from a Maxwell 
distribution. For  example, changing the number of  particles of  species 1 from 10,000 to 20,000 
changes the results by <0 .2% at ~l = 3. 

As e l ~ 0  and the particles nearly relax to their terminal velocities between successive col- 
lisions, the number of  I l- and 22-collisions becomes much smaller than the number of  12- 
collisions. This situation arises because the 12-collisions are driven by the differences in the 
particles' terminal velocities, whereas the //-collisions require particles to deviate from their 
terminal velocities. As a result, it is difficult to obtain a large number of//-coll isions within a 
single time step for el < 0.3. The //-collisions also have a relatively small effect on the velocity 
distribution in this limit, as may be seen from the analysis of  part 2. Thus, we have neglected 
//-collisions in the simulations for el < 0.3. A comparison of the calculation with and with- 
out //-collisions for el = 0.3 shows that they cause 3.7 and 1.8% changes in the vertical and 
horizontal mean-square velocities, respectively, and this effect will become smaller as el is further 
decreased. 

The results of  the simulations are presented in figures l 1-15. These figures give the moments of  
the distribution function of  species 1 when the particles have equal density and the size ratio 
a2/al = 0.7. The solid squares represent the results of  the simulation, the dashed lines are the results 
of  the approximate calculations described in section 2 and the solid line is an approximation 
proposed by Goldman & Sirovich (1967), which will be described below. Figure 11 gives the mean 
velocity of  species 1, figures 12 and 13 give the mean-square velocities in the vertical and horizontal 
directions respectively, figure 14 presents the ratio of the mean-square velocities and figure 15 the 
skewness. It may be seen that the approximations obtained in section 2 are close to the full 
numerical solutions for all values of  el and for all moments considered. The maximum error 
incurred by using the small el asymptote for el < 2.5 and the composite Gaussian approximation 
for et > 2.5 as proposed in section 2 is about 20%. The comparison between the approximate 
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Figure 13. Mean-square of  the vertical fluctuating velocity of  species 1, (c f r ) ,  as a function of  ~ :  i ,  
DSMC numerical simulations; - ,  approximations described in section 2; - - ,  approximation of  
Goldman  & Sirovich (1967). The ratio of  particle number  densities n2/n~ = 1 and the particle size ratio 

a2/al = 0.7. 

A 

A 

2 . 0  

1 .5  

1.0 

O, 5 

0 

1 0 - 2  

\ % 
• \ 

\,,,, 

\\\ • 

%% • 

\ \ \  • • 

\ \  I m 

I I l l i l l i l  i I J J l l J ] l  I ~ i l l U i l  I I I ] l l ] l l  I i i l l i l i ]  I i r l l i r l l  

10  -1  1 0  0 101 1 0  2 1 0  3 1 0  4 

E I 

Figure 14. Ratio of  the mean-square velocities in the vertical and horizontal directions of  species 1, 
( (c~:) / (c~,) ) ,  as a function of  ~l: I ,  DSMC numerical simulations; . . . .  , approximations described in 
section 2; - - ~ ,  approximation of  Goldman & Sirovich (1967). The ratio of  particle number  densities 

n2/n ] = 1 and the particle size ratio a2/a I = 0.7. 
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Figure 15. Skewness of the velocity distribution of species 1, ((c~.)/(c~..)3/2), as a function of ~: I ,  
DSMC numerical simulations; . . . .  , approximations described in section 2. The ratio of particle number 

densities nz/n I = I and the particle size ratio aflat = 0.7. 

calculation and the numerical simulations is particularly good for ei '~ 1 and *l ~> 1, which is not 
surprising because the approximations are asymptotically valid in these limits. 

A disadvantage of  the approximate velocity distribution function that we have proposed is 
that we do not have a single expression for the distribution function that is valid for all st. 
Instead we propose the use of  the composite Gaussian distribution for el > 2.5. For  smaller values 
of  ~l, this distribution function cannot be applied because one of  the variances in the vertical 
direction goes to zero and instead we use the distribution function derived in part 2 for the 
limit el a 1. As discussed in the introduction, other proposed distribution functions give the 
aphysical result that the distribution function becomes negative over a substantial portion of  the 
velocity space when the deviation from the Maxwell distribution is large. Goldman & Sirovich 
(1967) have proposed an approximate method for deriving the moments of  the velocity distri- 
bution function without solving the full distribution function. This approximation neglects 
certain "off-diagonal terms" in the collision operator which couple the first and second moments 
to the higher moments of  the velocity distribution function, and also makes certain approximations 
for the "diagonal terms" that are valid when the difference in the mean velocities of  the two 
species is small compared to the root-mean-square velocity, i.e. [ ( v 2 -  Vl )/(c~:)l/r] ,~ 1. Goldman 
& Sirovich's (1967) approximation (solid lines) gives a single expression for all values of  el. 
However, their results for the mean-square velocities are inaccurate except at large values of  
e I (see figures 12-14) and the ratio of the vertical to horizontal mean-square velocity given 
by Goldman & Sirovich's approximation as e t a 0  is 1.5 instead of  the correct value of  2.0. 
The failure of  the Goldman & Sirovich approximation for small et is not surprising in view 
of  the fact that both the higher moments and the ratio [ ( v 2 - v i ) / ( c ~ : )  1/2] become 
asymptotically large as el--+0. These features make the development of  approximate methods 
for determining the velocity distribution function for particulate flows much more difficult 
than for the molecular flows for which Goldman & Sirovich's approximation was originally 
intended. 
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5. CONCLUSIONS 

In this paper, we calculated the velocity moments of the suspension between the two asymptotic 
limits analysed in parts l and 2. In the limit ej ~ l, the higher-order terms in the expression for 
the velocity moments were small compared to the leading-order terms for e~ as high as about 0.5. 
However, in the limit e~ ~> l, the higher-order corrections were comparable to the leading-order 
velocity moments for e~ of about 100, indicating that the asymptotic analysis is not accurate for 
these values of et. In this paper, the velocity moments in the intermediate region were calculated 
using a composite Gaussian distribution, which incorporates some of the features of the 
distributions in the two limits. 

This distribution function reduces to the isotropic distribution in the limit e~ ~> l, but it has a 
non-zero skewness in the vertical direction. It is simple in form, so that it is easy to numerically 
calculate collision integrals using Gauss-Hermite quadrature. Unlike perturbations to the 
Maxwell-Boltzmann distribution that are in the form of polynomial expansions, this function is 
positive at all points in the velocity space. It does not have a unique second derivative at its 
maximum point, but this does not affect the analysis because no derivatives of second or higher 
order are encountered in the conservation equation. 

The parameters in the distribution function were calculated using balance equations for the 
following quantities for each species: (i) mean vertical velocity; (ii) mean-square of the vertical 
velocity; (iii) mean-square of the velocity in the horizontal plane; and (iii) third moment of the 
vertical velocity. The velocity moments were calculated for values of e~ as low as about 2.5 using 
the composite Gaussian distribution. At this point, one of the variances in the vertical direction 
became zero and the analysis could not be extended any further. For values of el smaller than 2.5, 
we proposed using the asymptotic results obtained in part 2 for e~ ~ 1. 

In section 4, we presented results of numerical simulations for the moments of the velocity 
distribution in a bidisperse, sedimenting particle-gas suspension. These results were obtained using 
the DSMC technique. The results of the simulations and the approximate calculation were in good 
agreement for all values of ~ with the maximum deviation being about 20%. This finding is 
consistent with an independent error estimate for the composite Gaussian distribution given in 
section 3. 

The mean velocity of  species i varies from its terminal velocity for the viscous dominated case, 
el ~ l, to a common mean velocity for the entire suspension in the collision dominated regime, 
el >> 1. The mean-square velocity has a maximum value of 0 0 0  -3) when el is O(1) and approaches 
zero both as e~ ~ 0  and as e~ -~ oo. For small values ofe~ the viscous drag rapidly dissipates the kinetic 
energy of the particles. For large values of e~ the frequent collisions minimize the difference in the 
mean velocities of the two species and thereby decrease the source of particle energy. The skewness 
of the velocity distribution becomes quite large as e~ is decreased, and this feature is well-represented 
in both the composite Gaussian approximation and the numerical simulations. 

The unusual features of the velocity distribution function for the particulate suspension in cases 
where the dissipative effects of the viscous drag forces are significant present challenges for the 
kinetic theory. It is important to choose an approximate form for the velocity distribution function 
and a method of analysis that captures the salient features of the specific flow problem being 
addressed. 
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